Mechanism of calcium-dependent inactivation of a potassium current in Aplysia neuron R15: interaction between calcium and cyclic AMP.

نویسندگان

  • R H Kramer
  • E S Levitan
  • M P Wilson
  • I B Levitan
چکیده

In the preceding paper (Kramer and Levitan, 1988), we presented evidence that an inwardly rectifying K+ current (IR) is inactivated by Ca2+ influx accompanying spontaneous bursting activity in the Aplysia neuron R15. In this paper we examine the mechanism that enables Ca2+ to inactivate IR. Since IR is enhanced by cyclic AMP in neuron R15 (Drummond et al., 1980; Benson and Levitan, 1983), we examined the Ca2+-dependent inactivation of IR after application of either serotonin (5-HT), the adenylate cyclase activator forskolin, or a membrane-permeable cAMP analog, all agents that increase cAMP and hence the magnitude of IR. Even though more active IR channels are available under these conditions, less Ca2+-dependent inactivation is observed. This is contrasted with the Ca2+-dependent inactivation of the voltage-gated Ca2+ current (ICa). Elevating cAMP enhances ICa in R15 and also increases its Ca2+-dependent inactivation. Hence the mechanisms whereby Ca2+ inactivates IR and ICa appear to differ from each other. Elevating internal Ca2+ by repeatedly depolarizing the neuron suppresses the response of IR to brief applications of 5-HT, and speeds the relaxation of the response, suggesting that Ca2+ can interfere with the cAMP-dependent activation of IR. One biochemical site where Ca2+ can reduce cellular cAMP is by activating the Ca2+/calmodulin-sensitive form of phosphodiesterase. We have detected such enzyme activity in homogenates of Aplysia abdominal ganglia and extracts of single R15 somata. Inhibitors of the phosphodiesterase activity suppress the Ca2+-dependent inactivation of IR. Finally, we have used a radioimmunoassay to measure cAMP in individual R15 somata, and have found that R15 neurons hyperpolarized for prolonged periods contain more cAMP than do R15 neurons allowed to burst, consistent with the hypothesis that Ca2+ influx reduces cAMP.(ABSTRACT TRUNCATED AT 250 WORDS)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Calcium-dependent inactivation of a potassium current in the Aplysia neuron R15.

The endogenously bursting pacemaker neuron R15 of Aplysia exhibits an inwardly rectifying K+ current (IR) that was shown previously to be enhanced by various neurotransmitters via the intracellular second messenger, cyclic AMP (Drummond et al., 1980; Benson and Levitan, 1983; Levitan et al., 1987). Here we present evidence that Ca2+ influx, either caused by spontaneous bursting activity or elic...

متن کامل

A cyclic GMP analog decreases the currents underlying bursting activity in the Aplysia neuron R15.

Bath application of 8-parachlorophenylthio-cyclic GMP (8-pcpt-cGMP) has been shown to increase the number of action potentials per burst in the Aplysia neuron R15. Here we report that 8-pcpt-cGMP can eventually inhibit R15's bursting activity and cause the cell to exhibit slow tonic spiking activity. This action is preceded by decreases in spike frequency and in the amplitude of the interburst ...

متن کامل

Serotonin acting via cyclic AMP enhances both the hyperpolarizing and depolarizing phases of bursting pacemaker activity in the Aplysia neuron R15.

Bath application of 5-HT, at concentrations below 10 microM, enhances the amplitude of the interburst hyperpolarization in the Aplysia bursting pacemaker neuron R15. It is known that 5-HT acts via cyclic AMP to produce this effect by increasing the inwardly rectifying potassium current (IR). Here, we report that further elevating the concentration of 5-HT produces an enhancement of the depolari...

متن کامل

Fine tuning of neuronal electrical activity: modulation of several ion channels by intracellular messengers in a single identified nerve cell.

The identified neurone R15 in the abdominal ganglion of the marine mollusc, Aplysia californica, exhibits a rhythmic bursting pattern of electrical activity. This pattern, which is generated endogenously by the interaction of several voltage- and time-dependent ion currents in R15's membrane, is subject to long-term modulation by synaptic stimulation and application of several neurotransmitters...

متن کامل

Augmentation of bursting pacemaker activity by egg-laying hormone in Aplysia neuron R15 is mediated by a cyclic AMP-dependent increase in Ca2+ and K+ currents.

Release of the neuropeptide egg-laying hormone (ELH) from Aplysia bag cell neurons augments the endogenous bursting pacemaker activity of neuron R15. We have studied the ionic mechanisms underlying the effect of ELH in voltage-clamped R15 neurons. Both electrical discharge of the bag cells, which releases endogenous ELH, and application of synthetic ELH on cell R15 result in an increase in two ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 8 5  شماره 

صفحات  -

تاریخ انتشار 1988